Functionally strain-graded nanoscoops for high power Li-ion battery anodes.

نویسندگان

  • Rahul Krishnan
  • Toh-Ming Lu
  • Nikhil Koratkar
چکیده

Lithium-ion batteries show poor performance for high power applications involving ultrafast charging/discharging rates. Here we report a functionally strain-graded carbon-aluminum-silicon anode architecture that overcomes this drawback. It consists of an array of nanostructures each comprising an amorphous carbon nanorod with an intermediate layer of aluminum that is finally capped by a silicon nanoscoop on the very top. The gradation in strain arises from graded levels of volumetric expansion in these three materials on alloying with lithium. The introduction of aluminum as an intermediate layer enables the gradual transition of strain from carbon to silicon, thereby minimizing the mismatch at interfaces between differentially strained materials and enabling stable operation of the electrode under high-rate charge/discharge conditions. At an accelerated current density of ∼51.2 A/g (i.e., charge/discharge rate of ∼40C), the strain-graded carbon-aluminum-silicon nanoscoop anode provides average capacities of ∼412 mAh/g with a power output of ∼100 kW/kg(electrode) continuously over 100 charge/discharge cycles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Investigation of Stress and Deformation Behavior of Functionally Graded Timoshenko Beams subjected to Thermo-Mechanical Load

A functionally graded material beam with generalized boundary conditions is contemplated in the present study in order to examine the deformation and stress behavior under thermal and thermo-mechanical load. Three discrete combinations of functionally graded materials have been deliberate in including a wide range of materials and material properties. The variation of material properties has be...

متن کامل

High capacity Li ion battery anodes using ge nanowires.

Ge nanowire electrodes fabricated by using vapor-liquid-solid growth on metallic current collector substrates were found to have good performance during cycling with Li. An initial discharge capacity of 1141 mA.h/g was found to be stable over 20 cycles at the C/20 rate. High power rates were also observed up to 2C with Coulombic efficiency > 99%. Structural characterization revealed that the Ge...

متن کامل

Delamination of Two-Dimensional Functionally Graded Multilayered Non-Linear Elastic Beam - an Analytical Approach

Delamination fracture of a two-dimensional functionally graded multilayered four-point bending beam that exhibits non-linear behaviour of the material is analyzed. The fracture is studied analytically in terms of the strain energy release rate. The beam under consideration has an arbitrary number of layers. Each layer has individual thickness and material properties. A delamination crack is loc...

متن کامل

SnO2/α-MoO3 core-shell nanobelts and their extraordinarily high reversible capacity as lithium-ion battery anodes.

Extraordinarily high reversible capacity of lithium-ion battery anodes is realized from SnO(2)/α-MoO(3) core-shell nanobelts. The reversible capacity is much higher than traditional theoretical results. Such behavior is attributed to α-MoO(3) that makes extra Li(2)O reversibly convert to Li(+).

متن کامل

Buckling Analysis of Functionally Graded Shallow Spherical Shells Under External Hydrostatic Pressure

The aim of this paper is to determine the critical buckling load for simply supported thin shallow spherical shells made of functionally graded material (FGM) subjected to uniform external pressure. A metal-ceramic functionally graded (FG) shell with a power law distribution for volume fraction is considered, where its properties vary gradually through the shell thickness direction from pure me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nano letters

دوره 11 2  شماره 

صفحات  -

تاریخ انتشار 2011